Query regarding a product:















BORON CARBIDE, SILICON CARBIDE, BLAST NOZZLES

BORON CARBIDE (B4C) AND SILICON CARBIDE (SiC) BLAST NOZZLES

As the world leader in high-performance ceramics, ESK has been producing boron carbide and silicon carbide blast nozzles for decades. Through our ongoing research and material development program, and by watching the market, we have steadily expanded our blast nozzle range, and can offer products of first-class quality and technology. TETRABOR boron carbide (B4C) blast nozzles and EKasic silicon carbide (SiC) blast nozzles are now successfully used all over the world.

TETRABOR Blast Nozzles

ESK blast nozzles of TETRABOR boron carbide (B4C) pay off thanks to their extreme resistance. The boron carbide with a density of more than 2.50 g/cm3 offers clear advantages:

  • Outstanding cost benefits thanks to its extreme wear resistance
  • Low air consumption through minimal widening of the bore
  • Constant operating conditions and uniform blasting performance
  • Unrivalled service life with all blasting agents

EKasic Blast Nozzles

ESK blast nozzles of EKasic silicon carbide (SiC) also offer a range of advantages:

  • Outstanding cost efficiency
  • Infrequent maintenance
  • Constant operating conditions and uniform blasting performance
fileadmin/esk/plain/tetrabor_b4c-e.html

Boron Carbide
Material properties Norm Symbol/Unit TETRABOR®
Density DIN EN 623-2 ρ [g/cm3] >2.48
Porosity DIN EN 623-2 P [%] <0.5
Mean grain size [μm] <10
Phase composition B4C, C
Vickers hardness DIN EN 843-4 HV 1 [GPa] 26
Knoop hardness DIN EN 843-4 HK 0.1 [GPa] 27
Young's modulus DIN EN 843-2 E [GPa] 410
Weibull modulus DIN EN 843-5 m 15
Flexural strength, 4-pt bending DIN EN 843-1 σB [MPa] 460
Compressive strength DIN 51104 σD [MPa] >2800
Poisson ratio DIN EN 843-2 ν 0.18
Fracture toughness (SENB) Klc [MPa·m0,5] 5
Coefficient of thermal expansion DIN EN 821-1
25°C - 500°C α [10-6/K] 4.5
500°C - 1000°C α [10-6/K] 6.3
Specific heat at 25°C DIN EN 821-3 cp [J/g K] 0.94
Thermal conductivity at 25°C DIN EN 821-2 λ [W/m K] 36
Thermal stress parameters calculated
R1 = σB·(1-ν) / (α·E) [K] 204
R2 = R1·λ [W/mm] 7
Specific electrical
resistance at 25°C
DIN EN 50359 ρ [Ω cm] 1
fileadmin/esk/plain/ekasic_f-e.html

Silicon Carbide
Material properties Norm Symbol/Unit EKasic®
F
Density DIN EN 623-2 ρ [g/cm3] >3.10
Porosity DIN EN 623-2 P [%] <3.0
Mean grain size [μm] <5
Grain size distribution [μm]
Phase composition α-SiC
Vickers hardness DIN EN 843-4 HV 1 [GPa] 24.5
Knoop hardness DIN EN 843-4 HK 0.1 [GPa] 24.5
Young's modulus DIN EN 843-2 E [GPa] 430
Weibull modulus DIN EN 843-5 m 10
Flexural strength, 4-pt bending DIN EN 843-1 σB [MPa] 400
Compressive strength σD [MPa] > 2500
Poisson ratio ν 0.17
Fracture toughness (SENB) Klc [MPa·m0,5] 4
Coefficient of thermal expansion DIN EN 821-1
20°C - 500°C α [10-6/K] 3.8
500°C - 1000°C α [10-6/K] 5.1
Specific heat at 25°C DIN EN 821-3 cp [J/g K] 0.69
Thermal conductivity at 25°C DIN EN 821-2 λ [W/m K] 130
Thermal stress parameters calculated
R1 = σB·(1-ν) / (α·E) R1 [K] 203
R2 = R1·λ R2 [W/mm] 26
Specific electrical
resistance at 25°C
DIN EN 50359 ρ [Ω cm] > 108